Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Mei Chen, Can-Zhong Lu,* Ya-Qin Yu, Quan-Zheng Zhang and Xiang He

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, National Center for Nanoscience and Nanotechnology, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{N}-\text{C}) = 0.014 \text{ Å}$ R factor = 0.039 wR factor = 0.105 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Bis(tetramethylammonium) hexaaquacobalt(II) β -octamolybdate(VI)

The title compound, $(C_4H_{12}N)_2[Co(H_2O)_6][\beta-Mo_8O_{26}]$, contains β -octamolybdate $([\beta-Mo_8O_{26}]^{4-})$, tetramethylammonium and $[Co(H_2O)_6]^{2+}$ ions. The $[\beta-Mo_8O_{26}]^{4-}$ anion and $[Co(H_2O)_6]^{2+}$ cations lie on inversion centers, and the tetramethylammonium cations lie on twofold rotation axes. Received 18 March 2004 Accepted 30 March 2004 Online 8 May 2004

Comment

More and more chemists are currently interested in topics concerning transition metal oxides (so-called polyoxometalates), owing mainly to their structural variety and promising potential applications in catalysis, biology, medicine and materials science (Wu *et al.*, 2002). Of the various polyoxometalate structures, some of the most interesting are members of the octamolybdate family, with a variety of structural isomers, including α -, β - and γ -octamolybdates *etc.* (Yang *et al.*, 2002).

In this paper, we report a new octamolybdate compound $(C_4H_{12}N)_2[Co(H_2O)_6][\beta-Mo_8O_{26}]$. X-ray crystallography shows that the title compound is discrete, consisting of $[\beta-Mo_8O_{26}]^{4-}$ anions, and tetramethylammonium and $[Co(H_2O)_6]^{2+}$ cations. The framework of this compound is similar to that of $(C_4H_{12}N)_2[Fe(H_2O)_6][Mo_8O_{26}]$ (Do *et al.*, 1999), the most significant differences between the two compounds being observed in the structures of the cations, the color and the space groups. The cobalt-centered cations and the anions lie on inversion centers, and the tetramethylammonium cations lie on twofold rotation axes.

Experimental

A mixture of $Na_2MoO_4 \cdot 2H_2O$ (0.120 g, 0.5 mmol), MoO_3 (0.20 g, 1.38 mmol), $NH_2OH \cdot HCl$ (0.15 g, 2.15 mmol), $(CH_3)_4NCl$ (0.11 g, 1.0 mmol), $Co(CH_3COO)_2$ (0.20 g, 1.13 mmol) and water (12 ml) was

Figure 1

The asymmetric unit of (I), together with the symmetry-related other half of each ion. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.

sealed in a 20 ml Teflon-lined stainless-steel reactor and heated to 433 K for 48 h. Red crystals of $(C_4H_{12}N)_2[Co(H_2O)_6][\beta-Mo_8O_{26}]$ suitable for X-ray analysis were obtained after the reaction was cooled to room temperature over a period of 48 h.

Crystal data

$D_x = 2.749 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 3856
reflections
$\theta = 2.0-25.1^{\circ}$
$\mu = 3.23 \text{ mm}^{-1}$
T = 293 (2) K
Prism, red
$0.43 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3195 independent ref
diffractometer	2825 reflections with
φ and ω scans	$R_{\rm int} = 0.021$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 19$
$T_{\min} = 0.421, T_{\max} = 0.525$	$k = -16 \rightarrow 14$
5426 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.105$ S=1.103195 reflections 239 parameters H atoms treated by a mixture of independent and constrained refinement

lections $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0357P)^2]$

+ 82.4908P] + 82.4908F] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -1.02 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.018$ $\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$

Mo1-O13	1.681 (5)	Mo3-O8	1.898 (5)
Mo1-O2	1.746 (5)	Mo3-O9	2.002 (5)
Mo1-O10	1.950 (5)	Mo3-O7 ⁱ	2.338 (5)
Mo1-O9	1.956 (5)	Mo3-O10 ⁱ	2.339 (5)
Mo1-O7 ⁱ	2.162 (5)	Mo4-O4	1.699 (6)
Mo1-O7	2.348 (5)	Mo4-O11	1.700 (6)
Mo2-O1	1.701 (5)	$M_{04} - O_{12}$	1.926 (5)
Mo2 - O6	1.701 (5)	$M_{04}-O_{8}$	1.931 (6)
Mo2 - O12	1.882 (5)	M_04-O2^i	2,295 (5)
$M_0^2 - O_{10}^1$	1 992 (5)	M_04-07^i	2,409 (5)
$Mo2 - O9^i$	2,327(5)	Col = OW3	2.063 (5)
$Mo^2 - O^{7i}$	2.350(5)	$C_{01} = OW^{2}$	2.000 (5)
Mo3-05	1 699 (6)	Col = OWl	2,104 (6)
Mo3-03	1.099(0) 1.701(5)	001 001	2.101 (0)
	10,01 (0)		
O13-Mo1-O2	104.7 (3)	08-Mo3-0/	77.1 (2)
O13-Mo1-O10	101.7 (2)	O9-Mo3-O7	73.54 (18)
O2-Mo1-O10	97.2 (2)	O5-Mo3-O10 ¹	88.2 (2)
O13-Mo1-O9	100.3 (2)	$O3 - Mo3 - O10^{1}$	164.0 (2)
O2-Mo1-O9	96.4 (2)	O8-Mo3-O10 ¹	83.9 (2)
O10-Mo1-O9	150.2 (2)	O9-Mo3-O10 ¹	71.56 (18)
$O13 - Mo1 - O7^{1}$	98.0 (2)	$O7^{i}-Mo3-O10^{i}$	71.20 (17)
O2-Mo1-O7 ¹	157.3 (2)	O4-Mo4-O11	105.2 (3)
$O10 - Mo1 - O7^{1}$	78.67 (19)	O4-Mo4-O12	101.8 (3)
O9-Mo1-O7 ⁱ	78.57 (19)	O11-Mo4-O12	98.7 (3)
O13-Mo1-O7	173.8 (2)	O4-Mo4-O8	101.6 (3)
O2-Mo1-O7	81.4 (2)	O11-Mo4-O8	98.4 (3)
O10-Mo1-O7	78.01 (19)	O12-Mo4-O8	146.1 (2)
O9-Mo1-O7	77.93 (18)	O4-Mo4-O2 ⁱ	88.7 (2)
$O7^{i}-Mo1-O7$	75.9 (2)	$O11-Mo4-O2^{i}$	166.0 (2)
O1-Mo2-O6	105.0 (3)	$O12-Mo4-O2^{1}$	78.0 (2)
O1-Mo2-O12	101.5 (3)	$O8 - Mo4 - O2^{1}$	78.4 (2)
O6-Mo2-O12	101.1 (3)	$O4-Mo4-O7^{1}$	159.0 (2)
O1-Mo2-O10	101.2 (3)	$O11 - Mo4 - O7^{1}$	95.7 (2)
O6-Mo2-O10	96.9 (2)	O12-Mo4-O7 ¹	74.59 (19)
O12-Mo2-O10	146.1 (2)	$O8-Mo4-O7^{1}$	74.78 (19)
$O1-Mo2-O9^{i}$	89.5 (2)	$O2^{1}-Mo4-O7^{1}$	70.28 (17)
$O6-Mo2-O9^{1}$	163.4 (2)	$OW3^{n}$ -Co1-OW3	180
$O12-Mo2-O9^{1}$	83.4 (2)	OW3 ⁿ -Co1-OW2 ⁿ	88.9 (2)
$O10-Mo2-O9^{i}$	71.99 (19)	OW3_Co1_OW2 ⁿ	91.1 (2)
$O1-Mo2-O7^{1}$	160.7 (2)	OW3 ⁿ -Co1-OW2	91.1 (2)
O6-Mo2-O7 ¹	94.1 (2)	OW3-Co1-OW2	88.9 (2)
$O12 - Mo2 - O7^{1}$	76.8 (2)	OW2 ⁿ -Co1-OW2	180
$O10-Mo2-O7^{1}$	73.42 (18)	OW3 ⁿ -Co1-OW1	94.1 (3)
$O9^{i}-Mo2-O7^{i}$	71.21 (16)	OW3-Co1-OW1	85.9 (3)
O5-Mo3-O3	105.3 (3)	OW2 ⁿ -Co1-OW1	89.7 (2)
O5-Mo3-O8	101.5 (3)	OW2-Co1-OW1	90.3 (2)
O3-Mo3-O8	101.5 (3)	$OW3^n - Co1 - OW1^n$	85.9 (3)
O5-Mo3-O9	100.3 (3)	OW3-Co1-OW1"	94.1 (3)
O3-Mo3-O9	97.1 (2)	OW2 ⁱⁱ -Co1-OW1 ⁱⁱ	90.3 (2)
O8-Mo3-O9	146.4 (2)	OW2-Co1-OW1 ⁱⁱ	89.7 (2)
$O5-Mo3-O7^{i}$	159.4 (2)	OW1-Co1-OW1 ⁱⁱ	180
O3-Mo3-O7 ¹	95.1 (2)		

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, 1 - z; (ii) $\frac{1}{2} - x$, $\frac{5}{2} - y$, 1 - z.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

Table 1

Selected geometric parameters (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
OW1−HW1A···O11	0.82	2.08	2.819 (8)	150
$OW1 - HW1B \cdots O4^{iii}$	0.82	2.10	2.852 (9)	153
OW2−HW2A···O13 ⁱⁱ	0.82	2.14	2.897 (7)	152
$OW2 - HW2A \cdots O4^{iii}$	0.82	2.42	2.916 (8)	120
$OW2 - HW2B \cdots O3^{ii}$	0.82	2.20	2.859 (8)	138
$OW2-HW2B\cdots O5^{iv}$	0.82	2.28	2.889 (8)	131
$OW3 - HW3B \cdots O6^{ii}$	0.82	2.02	2.764 (8)	151
$OW3-HW3A\cdots O1^{v}$	0.82	2.03	2.822 (8)	163

Symmetry codes: (ii) $\frac{1}{2} - x, \frac{5}{2} - y, 1 - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iv) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (v) $x - \frac{1}{2}, \frac{1}{2} + y, z.$

All H atoms were placed at calculated positions (C–H = 0.96 Å and O–H = 0.8184–0.8200 Å) and treated using a riding model. Isotropic displacement parameters were refined for water H atoms and constrained for C-bound H atoms [$U_{iso}(H) = 1.5U_{eq}(C)$]. The aqua H atoms were located from difference maps and refined freely. In the final differce map, the -1.020 Å⁻³ hole is 0.84 Å from atom Mo4 atom and the 0.680 Å⁻³ peak is 0.81 Å from atom Mo2.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *SAINT* and *XPREP* in *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the 973 program of the MOST (No. 001CB108906), the National Natural Science Foundation of China (Nos. 90206040, 20333070 and 20303021), the Natural Science Foundation of Fujian Province (Nos. 20002F015 and 2002 J006) and the Chinese Academy of Sciences.

References

- Do, J., Wang, X. & Jacobson, A. J. (1999). J. Solid State Chem. 143, 77-85.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wu, C. D., Lu, C. Z. & Zhuang, H. H. (2002). J. Am. Chem. Soc. 124, 3836– 3837.
- Yang, W. B., Lu, C. Z. & Zhuang, H. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2879–2884.